- Seminar Calendar
- Seminar Archive
- 2024-2025 Semester 2
- 2024-2025 Semester 1
- 2023-2024 Semester 2
- 2023-2024 Semester 1
- 2022-2023 Semester 2
- 2022-2023 Semester 1
- 2021-2022 Semester 2
- 2021-2022 Semester 1
- 2020-2021 Semester 2
- 2020-2021 Semester 1
- 2019-2020 Semester 2
- 2019-2020 Semester 1
- 2018-2019 Semester 2
- 2018-2019 Semester 1
- 2017-2018 Semester 2
- 2017-2018 Semester 1
- 2016-2017 Semester 2
- 2016-2017 Semester 1
- 2015-2016 Semester 1
- 2015-2016 Semester 2
- 2014-2015 Semester 2
- 2014-2015 Semester 1
- 2013-2014 Semester 2
- 2013-2014 Semester 1
- 2012-2013 Semester 2
- 2012-2013 Semester 1
- 2011-2012 Semester 2
- 2011-2012 Semester 1
- 2010-2011 Semester 2
- 2010-2011 Semester 1
- 2009-2010 Semester 2
- 2009-2010 Semester 1
- 2008-2009 Semester 2
- 2008-2009 Semester 1
- 2007-2008 Semester 2
- 2007-2008 Semester 1
- 2006-2007 Semester 2
- 2006-2007 Semester 1
- 2005-2006 Semester 2
- 2005-2006 Semester 1
- Contact
- Site Map
Rosetta: A Robust Space-Time Optimized Range Filter for Key-Value Stores
Date: Friday, October 23, 2020, 16:30 to 17:30
Title: Rosetta: A Robust Space-Time Optimized Range Filter for Key-Value Stores
Speaker: Prof. Siqiang LUO
Abstract:
In this talk, I will introduce Rosetta, a probabilistic range filter designed specifically for LSM-tree based key-value stores. The core intuition is that we can sacrifice filter probe time because it is not visible in end-to-end key-value store performance, which in turn allows us to significantly reduce the filter false positive rate for every level of the tree. Rosetta indexes all binary prefixes of a key using a hierarchically arranged set of Bloom filters. It then converts each range query into multiple probes, one for each non-overlapping binary prefix. We show how to integrate Rosetta in a full system, RocksDB, and we demonstrate that it brings as much as a 40x improvement compared to default RocksDB and 2-5x improvement compared to state-of-the-art range filters in a variety of workloads and across different levels of the memory hierarchy.
Biography:
Dr. Siqiang LUO is currently a tenure-track assistant professor at the Chinese University of Hong Kong, Shenzhen. He received his B.S. degree from Fudan University in 2010, and his M.S. degree from Fudan University in 2013. He then joined the industry for two years and later did his Ph. D. from the University of Hong Kong (2015-2019). He worked as a Postdoc Fellow of Harvard University from 2019 to 2020. His research interests include big data systems and algorithms. Many of his publications appear in top conferences and journals, including SIGMOD, PVLDB, ICDE, VLDB Journal, TKDE, and ICML.
Date:
Friday, October 23, 2020 - 16:30 to 17:30