- Seminar Calendar
- Seminar Archive
- 2024-2025 Semester 1
- 2023-2024 Semester 2
- 2023-2024 Semester 1
- 2022-2023 Semester 2
- 2022-2023 Semester 1
- 2021-2022 Semester 2
- 2021-2022 Semester 1
- 2020-2021 Semester 2
- 2020-2021 Semester 1
- 2019-2020 Semester 2
- 2019-2020 Semester 1
- 2018-2019 Semester 2
- 2018-2019 Semester 1
- 2017-2018 Semester 2
- 2017-2018 Semester 1
- 2016-2017 Semester 2
- 2016-2017 Semester 1
- 2015-2016 Semester 1
- 2015-2016 Semester 2
- 2014-2015 Semester 2
- 2014-2015 Semester 1
- 2013-2014 Semester 2
- 2013-2014 Semester 1
- 2012-2013 Semester 2
- 2012-2013 Semester 1
- 2011-2012 Semester 2
- 2011-2012 Semester 1
- 2010-2011 Semester 2
- 2010-2011 Semester 1
- 2009-2010 Semester 2
- 2009-2010 Semester 1
- 2008-2009 Semester 2
- 2008-2009 Semester 1
- 2007-2008 Semester 2
- 2007-2008 Semester 1
- 2006-2007 Semester 2
- 2006-2007 Semester 1
- 2005-2006 Semester 2
- 2005-2006 Semester 1
- Contact
- Site Map
Seminar: Optimal Hospital Care Scheduling During the SARS-CoV-2 Pandemic
----------------------------------------------------------------------------------------------------
Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong
----------------------------------------------------------------------------------------------------
Date: Friday, April 16, 2021, 16:30 to 17:30
Title: Optimal Hospital Care Scheduling During the SARS-CoV-2 Pandemic
Speaker: Professor Wolfram Wiesemann, Imperial College Business School
Abstract:
The COVID-19 pandemic has seen dramatic demand surges for hospital care that have placed a severe strain on health systems worldwide. As a result, policy makers are faced with the challenge of managing scarce hospital capacity so as to reduce the backlog of non-COVID patients whilst maintaining the ability to respond to any potential future increases in demand for COVID care. In this talk, we propose a nation-wide prioritization scheme that models each individual patient as a dynamic program whose states encode the patient's health and treatment condition, whose actions describe the available treatment options, whose transition probabilities characterize the stochastic evolution of the patient's health and whose rewards encode the contribution to the overall objectives of the health system. The individual patients' dynamic programs are coupled through constraints on the available resources, such as hospital beds, doctors and nurses. We show that near-optimal solutions to the emerging weakly coupled counting dynamic program can be found through a fluid approximation that gives rise to a linear program whose size grows gracefully in the problem dimensions. Our case study for the National Health Service in England shows how years of life can be gained and costs reduced by prioritizing specific disease types over COVID patients, such as injury & poisoning, diseases of the respiratory system, diseases of the circulatory system, diseases of the digestive system and cancer.
Date:
Friday, April 16, 2021 - 16:30 to 17:30